Multiplexed Shortwave Infrared Imaging Highlights Anatomical Structures in Mice

Author:

Zhong Xingjian12ORCID,Patel Amish12ORCID,Sun Yidan1ORCID,Saeboe Alexander M.3ORCID,Dennis Allison M.14ORCID

Affiliation:

1. Department of Chemical Engineering Northeastern University Boston MA USA

2. Department of Biomedical Engineering Boston University Boston MA USA

3. Division of Material Science & Engineering Boston University Boston MA USA

4. Department of Bioengineering Northeastern University Boston MA USA

Abstract

AbstractMultiplexed fluorescence in vivo imaging remains challenging due to the attenuation and scattering of visible and traditional near infrared (NIR‐I, 650–950 nm) wavelengths. Fluorescence imaging using shortwave infrared (SWIR, 1000–1700 nm, a.k.a. NIR‐II) light enables deeper tissue penetration due to reduced tissue scattering as well as minimal background autofluorescence. SWIR‐emitting semiconductor quantum dots (QDs) with tunable emission peaks and optical stability are powerful contrast agents, yet few imaging demonstrations exclusively use SWIR emission beyond two‐color imaging schemes. In this study, we engineered three high quality lead sulfide/cadmium sulfide (PbS/CdS) core/shell QDs with distinct SWIR emission peaks ranging from 1100–1550 nm for simultaneous three‐color imaging in mice. We first use the exceptional photostability of QDs to non‐invasively track lymphatic drainage with longitudinal imaging, highlighting the detailed networks of lymphatic vessels with widefield imaging over a 2 hr period. We then perform multiplexed imaging with all three QDs to distinctly visualize the lymphatic system and spatially overlapping vasculature networks, including clearly distinguishing the liver and spleen. This work establishes optimized SWIR QDs for next generation multiplexed and longitudinal preclinical imaging, unlocking numerous opportunities for preclinical studies of disease progression, drug biodistribution, and cell trafficking dynamics in living organisms.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3