Affiliation:
1. Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
2. Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA) Universidade NOVA de Lisboa Oeiras Portugal
Abstract
AbstractThe electrolysis of dilute CO2 streams suffers from low concentrations of dissolved substrate and its rapid depletion at the electrolyte‐electrocatalyst interface. These limitations require first energy‐intensive CO2 capture and concentration, before electrolyzers can achieve acceptable performances. For direct electrocatalytic CO2 reduction from low‐concentration sources, we introduce a strategy that mimics the carboxysome in cyanobacteria by utilizing microcompartments with nanoconfined enzymes in a porous electrode. A carbonic anhydrase accelerates CO2 hydration kinetics and minimizes substrate depletion by making all dissolved carbon available for utilization, while a highly efficient formate dehydrogenase reduces CO2 cleanly to formate; down to even atmospheric concentrations of CO2. This bio‐inspired concept demonstrates that the carboxysome provides a viable blueprint for the reduction of low‐concentration CO2 streams to chemicals by using all forms of dissolved carbon.
Funder
H2020 European Research Council
Leverhulme Trust
Subject
General Chemistry,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献