Interface‐Targeting Carrier‐Catalytic Integrated Design Contributing to Lithium Dihalide‐Rich SEI toward High Interface Stability for Long‐Life Solid‐State Lithium‐Metal Batteries

Author:

Zhou Xuanyi1,Huang Fenfen2,Zhang Xuedong2,Zhang Biao2,Cui Yingjie2,Wang Zehua2,Yang Qiong2,Ma Zengsheng2,Liu Jun1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials School of Materials Science and Engineering South China University of Technology Guangzhou 510641 China

2. Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education School of Materials Science and Engineering Xiangtan University Xiangtan 411105 China

Abstract

AbstractThe generation of solid electrolyte interphase (SEI) largely determines the comprehensive performance of all‐solid‐state batteries. Herein, a novel “carrier‐catalytic” integrated design is strategically exploited to in situ construct a stable LiF‐LiBr rich SEI by improving the electron transfer kinetics to accelerate the bond‐breaking dynamics. Specifically, the high electron transport capacity of Br‐TPOM skeleton increases the polarity of C−Br, thus promoting the generation of LiBr. Then, the enhancement of electron transfer kinetics further promotes the fracture of C−F from TFSI to form LiF. Finally, the stable and homogeneous artificial‐SEI with enriched lithium dihalide is constructed through the in situ co‐growth mechanism of LiF and LiBr, which facilitatse the Li‐ion transport kinetics and regulates the lithium deposition behavior. Impressively, the PEO‐Br‐TPOM paired with LiFePO4 delivers ultra‐long cycling stability over 1000 cycles with 81 % capacity retention at 1 C while the pouch cells possess 88 % superior capacity retention after 550 cycles with initial discharge capacity of 145 mAh g−1at 0.2 C in the absence of external pressure. Even under stringent conditions, the practical pouch cells possess the practical capacity with stable electric quantities plateau in 30 cycles demonstrates its application potential in energy storage field.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Special Project for Research and Development in Key areas of Guangdong Province

Natural Science Foundation of Hunan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3