N=8 Armchair Graphene Nanoribbons: Solution Synthesis and High Charge Carrier Mobility**

Author:

Yao Xuelin12ORCID,Zhang Heng1,Kong Fanmiao2,Hinaut Antoine3,Pawlak Rémy3,Okuno Masanari4,Graf Robert1,Horton Peter N.5,Coles Simon J.5,Meyer Ernst3,Bogani Lapo2,Bonn Mischa1,Wang Hai I.16,Müllen Klaus1,Narita Akimitsu17

Affiliation:

1. Max Planck Institute for Polymer Research Ackermannweg10 55128 Mainz Germany

2. Department of Materials University of Oxford OX1 3PH Oxford United Kingdom

3. Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland

4. Department of Basic Science Graduate School of Arts and Sciences The University of Tokyo 3-8-1 Komaba, Meguro 153-8902 Tokyo Japan

5. National Crystallography Service School of Chemistry University of Southampton SO17 1BJ Southampton United Kingdom

6. Nanophotonics Debye Institute for Nanomaterials Science Utrecht University Princetonplein 1 3584 CC Utrecht The Netherlands

7. Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University 904-0495 Okinawa Japan

Abstract

AbstractStructurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1 eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8‐AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor‐made polymer precursor into 8‐AGNRs was validated by FT‐IR, Raman, and UV/Vis‐near‐infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4‐ghi]perylene derivatives (1 and 2) as subunits of 8‐AGNR, with a width of 0.86 nm as suggested by the X‐ray single crystal analysis. Low‐temperature scanning tunneling microscopy (STM) and solid‐state NMR analyses provided further structural support for 8‐AGNR. The resulting 8‐AGNR exhibited a remarkable NIR absorption extending up to ∼2400 nm, corresponding to an optical band gap as low as ∼0.52 eV. Moreover, optical‐pump TeraHertz‐probe spectroscopy revealed charge‐carrier mobility in the dc limit of ∼270 cm2 V−1 s−1 for the 8‐AGNR.

Funder

Max-Planck-Gesellschaft

Deutsche Forschungsgemeinschaft

Japan Society for the Promotion of Science

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3