Phenazine‐based Compound Realizing Separate Hydrogen and Oxygen Production in Electrolytic Water Splitting

Author:

Wu Kangxi1,Li Haoze1,Liang Shuaika1,Ma Yuanyuan1,Yang Jianping1ORCID

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Institute of Functional Materials Donghua University 201620 Shanghai China

Abstract

AbstractElectrocatalytic water splitting powered by renewable energy is a sustainable approach for hydrogen production. However, conventional water electrolysis may suffer from gas mixing, and the different kinetics between hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) will limit the direct use of unstable renewable energies, leading to increased cost of H2 production. Herein, a novel phenazine‐based compound is synthesized to develop the solid‐state redox mediator associated water splititng process, and thus decoupling the H2 and O2 production in acid solution without the use of membrane. Excitingly, this organic redox mediator exhibits high specific capacity (290 mAh g−1 at 0.5 A g−1), excellent rate performance (186 mAh g−1 at 30 A g−1) and long cycle life (3000 cycles) due to its π‐conjugated aromatic structure and the fast kinetics of H+ storage/release process. Furthermore, a membrane‐free decoupled water electrolysis architecture driven by solar energy is achieved, demonstrating high‐purity H2 production at different times.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3