Affiliation:
1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan 430200 China
2. Hubei Key Laboratory of Pollutant Analysis & Reuse Technology College of Chemistry and Chemical Engineering Hubei Normal University Huangshi 435002 China
Abstract
AbstractCombining a strong second‐order nonlinear optical (NLO) effect (>1×KH2PO4 (KDP)), a large band gap (>4.2 eV), and a moderate birefringence in ultraviolet (UV) NLO crystals remains a formidable challenge. Herein, Cd(SCN)2(C4H6N2)2, the first example of a thiocyanate capable of realizing a phase‐matched UV NLO crystal material, is obtained by reducing the sulfur (S) content in the centrosymmetric (CS) structure of Cd(SCN)2(CH4N2S)2. Compared to the “shoulder‐to‐shoulder” one‐dimensional (1D) chain of Cd(SCN)2(CH4N2S)2, Cd(SCN)2(C4H6N2)2 has a different sawtooth 1D chain structure. Cd(SCN)2(CH4N2S)2 has second harmonic generation (SHG) inertia with a band gap of 3.90 eV and a UV cutoff edge of 342 nm, however, it possesses a large birefringence (0.35@546 nm). In contrast, the symmetry center breaking of Cd(SCN)2(C4H6N2)2 leads to remarkably strong SHG intensity (10 times that of KDP). Furthermore, it has a wide band gap (4.74 eV), short UV cutoff edge (234 nm), and moderate birefringence capable of phase matching (0.17@546 nm). This research indicates that thiocyanates are a promising class of UV NLO crystal materials, and that modulation of the sulfur content of CS thiocyanates is an effective strategy for the development of UV NLO crystals with excellent overall performances.
Funder
National Natural Science Foundation of China
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献