Long‐term reconstruction of energy fluxes in an alpine river: Effects of flow regulation and restoration

Author:

Consoli Gabriele12ORCID,Siebers Andre R.3,Bruder Andreas4ORCID,Robinson Christopher T.12

Affiliation:

1. Department of Aquatic Ecology Eawag Duebendorf Switzerland

2. Institute of Integrative Biology ETH‐Zürich Zürich Switzerland

3. Centre for Freshwater Ecosystems La Trobe University Wodonga Victoria Australia

4. Institute of Microbiology University of Applied Sciences and Arts of Southern Switzerland (SUPSI) Mendrisio Switzerland

Abstract

AbstractFlow regulation of montane and alpine headwater streams can fundamentally alter food web structure and energy flows through changes in productivity, resource availability, and community assembly. Dam flow‐release schemes can be used to mitigate the environmental impacts of flow regulation via environmental flows, which can increase discharge variability and other ecologically important hydrological properties. In particular, managed floods can reintroduce disturbance to the system and stimulate the reactivation of physical habitat dynamics. However, how managed floods might restore ecosystem processes is virtually unknown. In this study, we examined patterns in potential energy fluxes before, during and after a long‐term experimental flood program on the river Spöl, a regulated alpine River in southeast Switzerland. We used benthic samples collected during long‐term monitoring and stable isotope analysis (δ13C and δ15N) of macroinvertebrates and their potential food sources to reconstruct secondary production, and potential energy fluxes, over a 20‐year study period. The experimental floods did not alter the relative importance of basal resources but resulted in a considerable decline in secondary production, which remained low after the discontinuation of the floods. Our data suggest that a lack of recolonization by mosses following the discontinuation of the experimental flood program on the river Spöl may have driven patterns in energy fluxes by limiting macroinvertebrates using mosses for habitat. The effects of environmental flows on energy flows in this system thus depend on flood disturbance and the environmental context following the discontinuation of floods.

Publisher

Wiley

Subject

General Environmental Science,Water Science and Technology,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3