Consistent methods for fat‐free mass, creatinine clearance, and glomerular filtration rate to describe renal function from neonates to adults

Author:

O'Hanlon Conor J.1ORCID,Holford Nick1ORCID,Sumpter Anita2,Al‐Sallami Hesham S.3ORCID

Affiliation:

1. Department of Pharmacology & Clinical Pharmacology University of Auckland Auckland New Zealand

2. Department of Anesthesia Auckland Hospital Auckland New Zealand

3. School of Pharmacy University of Otago Dunedin New Zealand

Abstract

AbstractQuantifying the effect of kidney disease on glomerular filtration rate (GFR) is important when describing variability in the clearance of drugs eliminated by the kidney. We aimed to develop a continuous model for renal function (RF) from prematurity to adulthood based on consistent models for fat‐free mass (FFM), creatinine production rate (CPR), and GFR. A model for fractional FFM in premature neonates to adults was developed using pooled data from 4462 subjects and 2847 FFM observations. It was found that girls have an FFM higher than that predicted from adult women based on height, total body mass, and sex, and boys have an FFM lower than adult men until around the onset of puberty, when it approaches adult male values. Data from 108 subjects with measurements of serum creatinine (Scr) and GFR were used to construct a model for CPR. Creatinine clearance was predicted using a model for CPR (based on FFM, postmenstrual age, and sex) and Scr that avoids discontinuous predictions between neonates, children, and adults. Individual CPR may then be used with individual Scr to predict the estimated GFR (eGFR; eGFR = CPR/Scr). A previously published model for human GFR based on 1153 GFR observations in 923 subjects without known kidney disease was updated using the model for fractional FFM to predict individual size and age‐consistent values for the expected normal GFR (nGFR). Individual renal function was then calculated using RF = eGFR/nGFR.

Publisher

Wiley

Subject

Pharmacology (medical),Modeling and Simulation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3