Model‐informed pediatric dose selection of marzeptacog alfa (activated): An exposure matching strategy

Author:

Faraj Alan1,van Wijk Rob C.1ORCID,Neuman Linda2,Desai Shraddha2,Blouse Grant E.2,Knudsen Tom2,Simonsson Ulrika S. H.1ORCID

Affiliation:

1. Department of Pharmaceutical Biosciences Uppsala University Uppsala Sweden

2. Catalyst Biosciences South San Francisco California USA

Abstract

AbstractMarzeptacog alfa (activated) (MarzAA) is an activated recombinant human rFVII variant intended for subcutaneous (s.c.) administration to treat or prevent bleeding in individuals with hemophilia A (HA) or B (HB) with inhibitors, and other rare bleeding disorders. The s.c. administration provides benefits over i.v. injections. The objective of the study was to support the first‐in‐pediatric dose selection for s.c. MarzAA to treat episodic bleeding episodes in children up through 11 years in a registrational phase III trial. Assuming the same exposure‐response relationship as in adults, an exposure matching strategy was used with a population pharmacokinetics model. A sensitivity analysis evaluating the impact of doubling in absorption rate and age‐dependent allometric exponents on dose selection was performed. Subsequently, the probability of trial success, defined as the number of successful trials for a given pediatric dose divided by the number of simulated trials (n = 1000) was studied. A successful trial was defined as outcome where four, three, or two out of 24 pediatric subjects per trial were allowed to fall outside the adult exposures after s.c. administration of 60 μg/kg. A dose of 60 μg/kg in children with HA/HB was supported by the clinical trial simulations to match exposures in adults. The sensitivity analyses further supported selection of the 60 μg/kg dose level in all age groups. Moreover, the probability of trial success evaluations given a plausible design confirmed the potential of a 60 μg/kg dose level. Taken together, this work demonstrates the utility of model‐informed drug development and could be helpful for other pediatric development programs for rare diseases.

Publisher

Wiley

Subject

Pharmacology (medical),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3