Physiologically‐based pharmacokinetic pharmacodynamic parent‐metabolite model of edoxaban to predict drug–drug‐disease interactions: M4 contribution

Author:

Xu Ruijuan12,Liu Wenyuan13,Ge Weihong13,He Hua4,Jiang Qing2

Affiliation:

1. Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School Nanjing University Nanjing China

2. Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School Nanjing University Nanjing China

3. Department of Pharmacy Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine Nanjing China

4. Center of Drug Metabolism and Pharmacokinetics China Pharmaceutical University Nanjing China

Abstract

AbstractThis study aimed to develop a physiologically‐based pharmacokinetic pharmacodynamic (PBPK/PD) parent‐metabolite model of edoxaban, an oral anticoagulant with a narrow therapeutic index, and to predict pharmacokinetic (PK)/PD profiles and potential drug–drug‐disease interactions (DDDIs) in patients with renal impairment. A whole‐body PBPK model with a linear additive PD model of edoxaban and its active metabolite M4 was developed and validated in SimCYP for healthy adults with or without interacting drugs. The model was extrapolated to situations including renal impairment and drug‐drug interactions (DDIs). Observed PK and PD data in adults were compared with predicted data. The effect of several model parameters on the PK/PD response of edoxaban and M4 was investigated in sensitivity analysis. The PBPK/PD model successfully predicted PK profiles of edoxaban and M4 as well as anticoagulation PD responses with or without the influence of interacting drugs. For patients with renal impairment, the PBPK model successfully predicted the fold change in each impairment group. Inhibitory DDI and renal impairment had a synergistic effect on the increased exposure of edoxaban and M4, and their downstream anticoagulation PD effect. Sensitivity analysis and DDDI simulation show that renal clearance, intestinal P‐glycoprotein activity, and hepatic OATP1B1 activity are the major factors affecting edoxaban‐M4 PK profiles and PD responses. Anticoagulation effect induced by M4 cannot be ignored when OATP1B1 is inhibited or downregulated. Our study provides a reasonable approach to adjust the dose of edoxaban in several complicated scenarios especially when M4 cannot be ignored due to decreased OATP1B1 activity.

Publisher

Wiley

Subject

Pharmacology (medical),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3