The effect of data sources on calculating mean temperature and integrated water vapor in Iran

Author:

Rahimi Hassan1,Asgari Jamal1ORCID,Nafisi Vahab1

Affiliation:

1. Department of Geomatics Engineering, Faculty of Civil Engineering and Transportation University of Isfahan Isfahan Iran

Abstract

AbstractThe weighted mean temperature () plays a crucial role in calculating Precipitable Water Vapor (PWV) and integrated water vapor (IWV) using Global Navigation Satellite Systems (GNSS) techniques. Currently, the primary sources for meteorological parameters are radiosonde measurements and Numerical Weather Models (NWMs). This study focuses on assessing the influence of different data sources on the computation of and IWV in Iran. The investigation involved comparing several datasets: ERA5 numerical data with spatial resolutions of 0.125° and 2.5° (ERA5 0.125, ERA5 2.5), ERA‐Interim, NCEP numerical data and results derived from the GPT3 model. Validation of the results utilized data from 12 radiosonde stations situated across Iran. In addition, the precision of the IWV parameter was evaluated by utilizing measurements from the only available IGS station in the region, situated in Tehran. The results revealed that ERA5 0.125 exhibited superior accuracy in estimation compared with the other datasets, showing a discrepancy of approximately 1–2 K. In contrast, the GPT3 model displayed an accuracy of about 3 K. Analysing the results across different months of the year revealed elevated root mean square error (RMSE) values during warmer months, with little variability based on station height in the region for the four datasets. Regarding IWV, the ERA5 0.125 dataset outperformed the other three datasets, demonstrating an accuracy of about 0.07 kg m−2. Notably, RMSE values during summer were approximately 50% higher compared with the annual RMSE.

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3