A new model for simulating root water uptake by vegetation under the impact of a dynamic groundwater table in arid regions

Author:

Qiao Shufeng1ORCID,Ma Rui1,Sun Ziyong1,Wang Yunquan1,Hu Shun1

Affiliation:

1. School of Environmental Studies and MOE Key Laboratory of Biogeology and Environmental Geology China University of Geosciences Wuhan Hubei China

Abstract

AbstractEcological water conveyance is an effective measure to mitigate or reverse vegetation ecosystem degradation in arid regions, which can lead to frequent fluctuations in the groundwater table. The depth of soil water that vegetation takes up varies in response to groundwater table fluctuations in arid environments. To better characterize the root water uptake process under dynamic changes in the groundwater table in arid regions, this study proposed a new model for simulating root water uptake. The model reduces the dominant effect of root density on water uptake by introducing a correction factor and accounts for the effect of changes in the water content profile on root water uptake in arid areas. The new model was incorporated into the HYDRUS code and tested against the monitoring data of typical vegetation in the arid region of northwestern China. The results demonstrated that the soil water content simulated by the new model matched well with the observed data, which was consistent with the water uptake process under the fluctuations of the groundwater table at the study site. Compared with other models, this model can flexibly alter water uptake layers according to soil moisture conditions in arid conditions, thus providing a new method to depict the dynamic process of water uptake influenced by fluctuations in the groundwater table.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3