Rhein‐based Pickering emulsion for hepatocellular carcinoma: Shaping the metabolic signaling and immunoactivation in transarterial chemoembolization

Author:

Liang Xiaoliu1,Liu Hui1,Chen Hu1,Peng Xuqi1,Li Zhenjie1,Teng Minglei1,Peng Yisheng1,Li Jiwei2,Ding Linyu1,Mao Jingsong1,Chu Chengchao13,Cheng Hongwei14ORCID,Liu Gang1ORCID

Affiliation:

1. State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China

2. Department of Respiratory Critical Care and Sleep Medicine Xiang'an Hospital of Xiamen University, School of Medicine Xiamen University Xiamen China

3. Eye Institute of Xiamen University Fujian Provincial Key Laboratory of Ophthalmology and Visual Science Xiamen University Xiamen China

4. Zhuhai UM Science & Technology Research Institute Institute of Applied Physics and Materials Engineering University of Macau Macau SAR China

Abstract

AbstractThe efficacy of transarterial chemoembolization (TACE) has been limited by insufficient embolization and a high incidence of tumor recurrence. Herein, we identified that aberrant metabolic reprogramming and immunosuppression contribute to TACE refractoriness and Rhein, as a potential glycolytic metabolism inhibitor and immunoactivation inducer, was optimized to sensitize tumors to TACE therapy. To achieve efficient embolization, we developed an oil‐in‐water lipiodol embolic emulsion by stabilizing the self‐assembled Rhein nanogel. The assembled Rhein exhibited a nanofiber network, and its integration enhanced the mechanical stability and viscoelasticity of the lipiodol embolic agent. With the synergistic advantages of solid and liquid embolic agents, this carrier‐free Pickering emulsion exhibits efficient embolization and sustained drug release in models of unilateral renal artery embolization, rabbit ear tumor embolization, rabbit orthotopic liver cancer, and rat orthotopic liver cancer. Compared to conventional three‐way catheter mixing methods, multimodal imaging corroborates a marked enhancement in local drug retention and tumor suppression. Importantly, the incorporation of Rhein‐mediated synergistic immunoembolization in this strategy achieved efficient embolization while robustly activating anti‐tumor immune responses, including inducing immunogenic cell death, dendritic cell activation, and major histocompatibility complex class I presentation to CD8+ T cells for tumor killing. Together, these findings reveal a novel strategy for the application of self‐assembled Rhein nanofiber‐stabilized lipiodol emulsion to control metabolic signaling and immunoactivation in TACE.

Funder

Major State Basic Research Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3