Estimating Octanol–Water Partition Coefficients of Novel Brominated Flame Retardants by Reversed‐Phase High‐Performance Liquid Chromatography and Computational Models

Author:

Sigman‐Lowery Anthony J.1ORCID,Di Toro Dominic M.1,Chin Yu‐Ping1

Affiliation:

1. Department of Civil and Environmental Engineering University of Delaware Newark Delaware USA

Abstract

AbstractLegacy brominated flame retardants, including polybrominated diphenyl ethers (PBDEs), have been classified as persistent organic pollutants and replaced with novel brominated flame retardants (NBFRs). The octanol–water partition coefficients (log KOW) of NBFRs have been computationally estimated, but the log KOW values provided by these methods can differ by 1 to 3 orders of magnitude. Given the importance of this parameter in fate and toxicity models, we indirectly measured the log KOW values of eight NBFRs by their capacity factor (k′) on a reversed‐phase high‐performance liquid chromatography (HPLC) C18 column by isocratic elution and compared these measured values with those estimated by nine computational models. Log KOW values were obtained for the NBFRs 1,2‐bis(2,4,6‐tribromophenoxy) ethane, pentabromobenzene, pentabromoethylbenzene, pentabromotoluene, 2‐ethylhexyl 2,3,4,5‐tetrabromobenzoate, allyl 2,4,6‐tribromophenylether, 2,3‐dibromopropyl‐2,4,6‐tribromophenyl ether, and bis(2‐ethylhexyl) tetrabromophthalate. A training set of phthalates, polychlorinated biphenyls, PBDEs, and halogenated benzenes were chosen to obtain the log k′–log KOW calibration for the NBFRs. The computational models KowWIN, XLogP3, EAS‐E Suite, COSMOtherm, DirectML, and Abraham polyparameter linear free energy relationships all predicted the log KOW values of the calibration compounds to within 1 order of magnitude without significant bias. The median of these models predicted log KOW values for the calibration compounds that were close to those known in the literature with root mean square error (RMSE) = 0.224 and for the NBFRs that were close to those measured by HPLC (RMSE = 0.334). Environ Toxicol Chem 2024;00:1–10. © 2024 SETAC

Funder

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3