AI‐organoid integrated systems for biomedical studies and applications

Author:

Maramraju Sudhiksha12,Kowalczewski Andrew34,Kaza Anirudh12,Liu Xiyuan5,Singaraju Jathin Pranav12,Albert Mark V.16,Ma Zhen34,Yang Huaxiao1ORCID

Affiliation:

1. Department of Biomedical Engineering University of North Texas Denton Texas USA

2. Texas Academy of Mathematics and Science University of North Texas Denton Texas USA

3. Department of Biomedical & Chemical Engineering Syracuse University Syracuse New York USA

4. BioInspired Institute for Material and Living Systems Syracuse University Syracuse New York USA

5. Department of Mechanical & Aerospace Engineering Syracuse University Syracuse New York USA

6. Department of Computer Science and Engineering University of North Texas Denton Texas USA

Abstract

AbstractIn this review, we explore the growing role of artificial intelligence (AI) in advancing the biomedical applications of human pluripotent stem cell (hPSC)‐derived organoids. Stem cell‐derived organoids, these miniature organ replicas, have become essential tools for disease modeling, drug discovery, and regenerative medicine. However, analyzing the vast and intricate datasets generated from these organoids can be inefficient and error‐prone. AI techniques offer a promising solution to efficiently extract insights and make predictions from diverse data types generated from microscopy images, transcriptomics, metabolomics, and proteomics. This review offers a brief overview of organoid characterization and fundamental concepts in AI while focusing on a comprehensive exploration of AI applications in organoid‐based disease modeling and drug evaluation. It provides insights into the future possibilities of AI in enhancing the quality control of organoid fabrication, label‐free organoid recognition, and three‐dimensional image reconstruction of complex organoid structures. This review presents the challenges and potential solutions in AI‐organoid integration, focusing on the establishment of reliable AI model decision‐making processes and the standardization of organoid research.

Funder

Syracuse University

University of North Texas

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Directorate for Engineering

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3