Branched poly‐l‐lysine for cartilage penetrating carriers

Author:

Gonzales Gavin1,Hoque Jiaul2,Gilpin Anna1,Maity Biswanath2,Zauscher Stefan3,Varghese Shyni123ORCID

Affiliation:

1. Department of Biomedical Engineering Duke University Durham North Carolina USA

2. Department of Orthopedic Surgery Duke University School of Medicine Durham North Carolina USA

3. Department of Mechanical Engineering and Materials Science Duke University Durham North Carolina USA

Abstract

AbstractJoint diseases, such as osteoarthritis, often require delivery of drugs to chondrocytes residing within the cartilage. However, intra‐articular delivery of drugs to cartilage remains a challenge due to their rapid clearance within the joint. This problem is further exacerbated by the dense and negatively charged cartilage extracellular matrix (ECM). Cationic nanocarriers that form reversible electrostatic interactions with the anionic ECM can be an effective approach to overcome the electrostatic barrier presented by cartilage tissue. For an effective therapeutic outcome, the nanocarriers need to penetrate, accumulate, and be retained within the cartilage tissue. Nanocarriers that adhere quickly to cartilage tissue after intra‐articular administration, transport through cartilage, and remain within its full thickness are crucial to the therapeutic outcome. To this end, we used ring‐opening polymerization to synthesize branched poly(l‐lysine) (BPL) cationic nanocarriers with varying numbers of poly(lysine) branches, surface charge, and functional groups, while maintaining similar hydrodynamic diameters. Our results show that the multivalent BPL molecules, including those that are highly branched (i.e., generation two), can readily adhere and transport through the full thickness of cartilage, healthy and degenerated, with prolonged intra‐cartilage retention. Intra‐articular injection of the BPL molecules in mouse knee joint explants and rat knee joints showed their localization and retention. In summary, this study describes an approach to design nanocarriers with varying charge and abundant functional groups while maintaining similar hydrodynamic diameters to aid the delivery of macromolecules to negatively charged tissues.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

National Institutes of Health

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3