Therapeutic potential of mesenchymal stem cells from human iPSC‐derived teratomas for osteochondral defect regeneration

Author:

Kim Jiseong1,Kim Jin‐Su23,Kim Dohyun1,Bello Alvin Bacero14,Kim Byoung Ju5,Cha Byung‐Hyun6,Lee Soo‐Hong1ORCID

Affiliation:

1. Department of Biomedical Technology Dongguk University Goyang‐si Republic of Korea

2. Department of Biomedical Science CHA University Seongnam‐si Republic of Korea

3. Biomaterials Research Center CELLINBIO Co., Ltd. Suwon‐si Gyeonggi‐do Republic of Korea

4. Department of Integrative Engineering Chung‐Ang University Seoul Republic of Korea

5. Department of Rearch & Development team ATEMs Seoul Republic of Korea

6. Division of Biomedical Convergence College of Biomedical Science, Kangwon National University Chuncheon‐si Republic of Korea

Abstract

AbstractHuman induced pluripotent stem cells (iPSCs) hold great promise for personalized medicine, as they can be differentiated into specific cell types, especially mesenchymal stem cells (MSCs). Therefore, our study sought to assess the feasibility of deriving MSCs from teratomas generated from human iPSCs. Teratomas serve as a model to mimic multilineage human development, thus enriching specific somatic progenitors and stem cells. Here, we discovered a small, condensed mass of MSCs within iPSC‐generated teratomas. Afterward, we successfully isolated MSCs from this condensed mass, which was a byproduct of teratoma development. To evaluate the characteristics and cell behaviors of iPSC‐derived MSCs (iPSC‐MSCs), we conducted comprehensive assessments using qPCR, immunophenotype analysis, and cell proliferation‐related assays. Remarkably, iPSC‐MSCs exhibited an immunophenotype resembling that of conventional MSCs, and they displayed robust proliferative capabilities, similar to those of higher pluripotent stem cell‐derived MSCs. Furthermore, iPSC‐MSCs demonstrated the ability to differentiate into multiple lineages in vitro. Finally, we evaluated the therapeutic potential of iPSC‐MSCs using an osteochondral defect model. Our findings demonstrated that teratomas are a promising source for the isolation of condensed MSCs. More importantly, our results suggest that iPSC‐MSCs derived from teratomas possess the capacity for tissue regeneration, highlighting their promise for future therapeutic applications.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3