Highly efficient CRISPR/Cas9‐mediated exon skipping for recessive dystrophic epidermolysis bullosa

Author:

du Rand Alex1ORCID,Hunt John1ORCID,Samson Christopher1ORCID,Loef Evert1ORCID,Malhi Chloe1ORCID,Meidinger Sarah1ORCID,Chen Chun‐Jen Jennifer1,Nutsford Ashley1ORCID,Taylor John1,Dunbar Rod1,Purvis Diana2,Feisst Vaughan1ORCID,Sheppard Hilary1ORCID

Affiliation:

1. School of Biological Sciences The University of Auckland Auckland New Zealand

2. Te Whatu Ora Health New Zealand Te Toka Tumai Auckland New Zealand

Abstract

AbstractGene therapy based on the CRISPR/Cas9 system has emerged as a promising strategy for treating the monogenic fragile skin disorder recessive dystrophic epidermolysis bullosa (RDEB). With this approach problematic wounds could be grafted with gene edited, patient‐specific skin equivalents. Precise gene editing using homology‐directed repair (HDR) is the ultimate goal, however low efficiencies have hindered progress. Reframing strategies based on highly efficient non‐homologous end joining (NHEJ) repair aimed at excising dispensable, mutation‐harboring exons offer a promising alternative approach for restoring the COL7A1 open reading frame. To this end, we employed an exon skipping strategy using dual single guide RNA (sgRNA)/Cas9 ribonucleoproteins (RNPs) targeted at three novel COL7A1 exons (31, 68, and 109) containing pathogenic heterozygous mutations, and achieved exon deletion rates of up to 95%. Deletion of exon 31 in both primary human RDEB keratinocytes and fibroblasts resulted in the restoration of type VII collagen (C7), leading to increased cellular adhesion in vitro and accurate C7 deposition at the dermal‐epidermal junction in a 3D skin model. Taken together, we extend the list of COL7A1 exons amenable to therapeutic deletion. As an incidental finding, we find that long‐read Nanopore sequencing detected large on‐target structural variants comprised of deletions up to >5 kb at a frequency of ~10%. Although this frequency may be acceptable given the high rates of intended editing outcomes, our data demonstrate that standard short‐read sequencing may underestimate the full range of unexpected Cas9‐mediated editing events.

Funder

Auckland Medical Research Foundation

Maurice and Phyllis Paykel Trust

Cure Kids

Faculty of Science, Prince of Songkla University

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3