Orthotopic equine study confirms the pivotal importance of structural reinforcement over the pre‐culture of cartilage implants

Author:

de Ruijter Mylène12ORCID,Diloksumpan Paweena2ORCID,Dokter Inge1,Brommer Harold2ORCID,Smit Ineke H.2,Levato Riccardo12ORCID,van Weeren P. René2ORCID,Castilho Miguel13ORCID,Malda Jos12ORCID

Affiliation:

1. Department of Orthopaedics, RMCU Utrecht, UMC Utrecht University of Utrecht Utrecht The Netherlands

2. Department of Clinical Sciences, Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands

3. Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands

Abstract

AbstractIn articular cartilage (AC), the collagen arcades provide the tissue with its extraordinary mechanical properties. As these structures cannot be restored once damaged, functional restoration of AC defects remains a major challenge. We report that the use of a converged bioprinted, osteochondral implant, based on a gelatin methacryloyl cartilage phase, reinforced with precisely patterned melt electrowritten polycaprolactone micrometer‐scale fibers in a zonal fashion, inspired by native collagen architecture, can provide long‐term mechanically stable neo‐tissue in an orthotopic large animal model. The design of this novel implant was achieved via state‐of‐the‐art converging of extrusion‐based ceramic printing, melt electrowriting, and extrusion‐based bioprinting. Interestingly, the cell‐free implants, used as a control in this study, showed abundant cell ingrowth and similar favorable results as the cell‐containing implants. Our findings underscore the hypothesis that mechanical stability is more determining for the successful survival of the implant than the presence of cells and pre‐cultured extracellular matrix. This observation is of great translational importance and highlights the aptness of advanced 3D (bio)fabrication technologies for functional tissue restoration in the harsh articular joint mechanical environment.

Funder

Dutch Arthritis Society

Eurostars

H2020 European Research Council

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3