AAVS1‐targeted, stable expression of ChR2 in human brain organoids for consistent optogenetic control

Author:

Hong Soojung12,Lee Juhee2,Kim Yunhee12,Kim Eunjee2,Shin Kunyoo12ORCID

Affiliation:

1. School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul Republic of Korea

2. Institute of Molecular Biology and Genetics, Seoul National University Seoul Republic of Korea

Abstract

AbstractSelf‐organizing brain organoids provide a promising tool for studying human development and disease. Here we created human forebrain organoids with stable and homogeneous expression of channelrhodopsin‐2 (ChR2) by generating AAVS1 safe harbor locus‐targeted, ChR2 knocked‐in human pluripotent stem cells (hPSCs), followed by the differentiation of these genetically engineered hPSCs into forebrain organoids. The resulting ChR2‐expressing human forebrain organoids showed homogeneous cellular expression of ChR2 throughout entire regions without any structural and functional perturbations and displayed consistent and robust neural activation upon light stimulation, allowing for the non‐virus mediated, spatiotemporal optogenetic control of neural activities. Furthermore, in the hybrid platform in which brain organoids are connected with spinal cord organoids and skeletal muscle spheroids, ChR2 knocked‐in forebrain organoids induced strong and consistent muscle contraction upon brain‐specific optogenetic stimulation. Our study thus provides a novel, non‐virus mediated, preclinical human organoid system for light‐inducible, consistent control of neural activities to study neural circuits and dynamics in normal and disease‐specific human brains as well as neural connections between brain and other peripheral tissues.

Funder

National Research Foundation of Korea

Samsung Science and Technology Foundation

Samsung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3