Uncertainties in the observational reference: implications in skill assessment and model ranking of seasonal predictions

Author:

Ramon Jaume1ORCID,Lledó Llorenç12,Ferro Christopher A. T.3ORCID,Doblas‐Reyes Francisco J.14

Affiliation:

1. Barcelona Supercomputing Center (BSC), c/ Jordi Girona, 29 Barcelona Spain

2. European Centre for Medium‐Range Weather Forecasts (ECMWF) Bonn Germany

3. University of Exeter, Laver Building, North Park Road Exeter United Kingdom

4. ICREA, Pg. Lluís Companys 23 Barcelona Spain

Abstract

AbstractThe probabilistic skill of seasonal prediction systems is often inferred using reanalysis data, assuming these benchmark observations to be error‐free. However, an increasing number of studies report non‐negligible levels of uncertainty affecting reanalysis observations, especially when it comes to variables like precipitation or wind speed. We consider different possibilities to account for such error in forecast quality assessment, either exploiting the newly produced ensemble reanalyses (e.g. ERA5‐EDA) or applying methodologies that use scores that take observational uncertainty into account. We illustrate the benefits of employing ensemble reanalyses over traditional reanalyses, and show how the true skill can be approximated, whatever the observational reference. We ultimately emphasise the perils and quantify the error committed when the observational reference, either reanalysis or point dataset, is selected arbitrarily for verifying a seasonal prediction system.This article is protected by copyright. All rights reserved.

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3