Epigallocatechin‐3‐gallate promotes wound healing response in diabetic mice by activating keratinocytes and promoting re‐epithelialization

Author:

Ning Yongling1,Yuan Zhiying1,Wang Qing1,He Jia12,Zhu Weidong12,Ren Dan‐ni1ORCID,Wo Da12ORCID

Affiliation:

1. Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric Fujian University of Traditional Chinese Medicine Fuzhou China

2. Innovation and Transformation Center Fujian University of Traditional Chinese Medicine Fuzhou China

Abstract

AbstractType 2 diabetes (T2D) is a metabolic disorder that causes numerous complications including impaired wound healing and poses a significant challenge for the management of diabetic patients. Epigallocatechin‐3‐gallate (EGCG) is a natural polyphenol that exhibits anti‐inflammatory and anti‐oxidative benefits in skin wounds, however, the direct effect of EGCG on epidermal keratinocytes, the primary cells required for re‐epithelialization in wound healing remains unknown. Our study aims to examine the underlying mechanisms of EGCG's ability to promote re‐epithelialization and wound healing in T2D‐induced wounds. Murine models of wound healing in T2D were established via feeding high‐fat high‐fructose diet (HFFD) and the creation of full‐thickness wounds. Mice were administered daily with EGCG or vehicle to examine the wound healing response and underlying molecular mechanisms of EGCG's protective effects. Systemic administration of EGCG in T2D mice robustly accelerated the wound healing response following injury. EGCG induced nuclear translocation of nuclear factor erythroid 2‐related factor 2 (NRF2) and promoted cytokeratin 16 (K16) expression to activate epidermal keratinocytes and robustly promoted re‐epithelialization of wounds in diabetic mice. Further, EGCG demonstrated high binding affinity with Kelch‐like ECH‐associated protein 1 (KEAP1), thereby inhibiting KEAP1‐mediated degradation of NRF2. Our findings provide important evidence that EGCG accelerates the wound healing response in diabetic mice by activating epidermal keratinocytes, thereby promoting re‐epithelialization of wounds via K16/NRF2/KEAP1 signaling axis. These mechanistic insights into the protective effects of EGCG further suggest its therapeutic potential as a promising drug for treating chronic wounds in T2D.

Publisher

Wiley

Subject

Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3