3D joint interpretation of potential field, geology, and well data to evaluate a salt dome in the Qarah‐Aghaje area, Zanjan, NW Iran

Author:

Ghari Hosseinali1,Varfinezhad Ramin2ORCID,Parnow Saeed2

Affiliation:

1. Department of Mining and Metallurgical Engineering Yazd University Yazd Iran

2. Department of Earth Physics Institute of Geophysics University of Tehran Tehran Iran

Abstract

AbstractAs geophysical parameters are not always functionally related, treating multiple geophysical data sets to have a realistic geological model is not straightforward. An effective strategy to derive a geological interpretation is a combination of several geophysical methods with geological and well observations, each with its advantages and limitations. Gravity and magnetic methods are encouraging tools to investigate salt domes due to enough density and susceptibility contrasts between salt minerals and the background sedimentary rocks. In this paper, the dome‐shaped salt unit in the Qarah‐Aghaje area in Zanjan, located in the northwestern part of Iran, is investigated through the integration of 3D inversion models obtained from gravity and magnetic data and geological and well information. The 3D inversion of both data sets is made using a weighted damped minimum length solution for which model weighting is constructed from multiplying depth weighting and compactness constraints. At first, a synthetic case with a high degree of similarity to the real case is considered to evaluate the efficiency of the adopted inverse algorithm. Then, the inversion algorithm is implemented on the collected gravity and magnetic methods, and interpretation is made utilizing 3D obtained inverse models and geologic and well data. The result shows a dome‐shaped potash‐bearing salt unit that starts from a depth of 12 m and continues to the depth of 200 m. The drilled well in the centre of the main source of the salt (Well 3) demonstrates a depth range of 11–115 m.

Publisher

Wiley

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3