X‐ray absorption fine structure characterization of a multicomponent spinel catalyst

Author:

Jahrman Evan P.1ORCID,Masias Kimber L. Stamm2,Peck Torin C.2,Roberts Charles A.2

Affiliation:

1. Material Measurement Laboratory National Institute of Standards and Technology Gaithersburg Maryland USA

2. Toyota Research Institute of North America Ann Arbor Michigan USA

Abstract

AbstractDemand for high‐performing, inexpensive catalysts has motivated the development of mixed 3d transition metal architectures. Here, x‐ray spectroscopies are uniquely positioned to inform intensive searches of compositional spaces by elucidating structure–function relationships. However, thorough analyses of complex systems are often non‐trivial. In this work, one such example was pursued, a chemical series of spinel‐based emissions catalysts of the general formula Mn0.1CuxCo2.9−xO4 for 0.1 ≤ x ≤ 0.8. The local electronic and atomic structures of these materials were characterized by x‐ray absorption near edge structure (XANES) and extended x‐ray absorption fine structure (EXAFS) analyses, respectively. EXAFS analyses required models to be constructed that captured the relevant structural changes across the chemical series. Building these models required insights from XANES, x‐ray diffraction (XRD), and inductively coupled plasma atomic emission spectroscopy analyses. XANES measurements at the Co K‐edge, when complemented with ab initio multiple scattering calculations, suggested that the fraction of Co atoms in the octahedral sites of the spinel increased as the concentration of substituted Cu increased. Similarly, XANES measurements at the Mn K‐edge suggested that the occupancy of the first coordination shell varied throughout the series. Finally, the XRD results revealed an impurity, a CuO phase, formed at higher copper concentrations. This is consistent with the results of the principal component analysis performed on the Cu K‐edge XANES spectra. These hypotheses were incorporated into the EXAFS fitting models and are consistent with the subsequent quantitative analyses.

Funder

National Institute of Standards and Technology

Publisher

Wiley

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3