Schiff base flexible organic crystals toward multifunctional applications

Author:

Ding Xue‐Hua1,Wang Li‐Zhi1,Chang Yong‐Zheng2,Wei Chuan‐Xin2,Lin Jin‐Yi1ORCID,Ding Man‐Hua3,Huang Wei12

Affiliation:

1. Key Laboratory of Flexible Electronics, Institute of Advanced Materials Nanjing Tech University (NanjingTech) Nanjing China

2. State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing China

3. Department of Radiotherapy Xuzhou Cancer Hospital Xuzhou Jiangsu China

Abstract

AbstractThe emergence of flexible organic crystals changed the perception of molecular crystals that were regarded as brittle entities over a long period of time, and sparked a great interest in exploring mechanically compliant organic crystalline materials toward next‐generation smart materials during the past decade. Schiff base compounds are considered to be one of the most promising candidates for flexible organic crystals owing to their easy synthesis, high yield, stimuli responsiveness and good mechanical properties. This paper gives an overview of the recent development of Schiff base flexible organic crystals (including elastic organic crystals, plastic organic crystals, and flexible organic crystals integrating elasticity and plasticity) from serendipitous discovery to design strategies and versatile applications such as stimuli responses, optical waveguides, optoelectronic devices, biomimetic soft robots, and organic photonic integrated circuits. Notably, atomic force microscopy‐micromanipulation technique has been utilized to bring the multifunctional applications of flexible organic crystals from the macroscopic level to the microscopic world. Since understanding mechanical flexibility at the molecular level through crystal engineering can assist us to trace down the structural origin of mechanical properties, we focus on the packing structures of various Schiff base flexible organic crystals driven by non‐covalent intermolecular interactions and their close correlation with mechanical behaviors. We hope that the information given here will help in the design of novel flexible organic crystals combined with other unique properties, and promote further research into the area of mechanically compliant organic crystalline materials toward multifunctional applications.

Funder

National Natural Science Foundation of China

State Key Laboratory of Luminescent Materials and Devices

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3