Reliability modeling to predict in‐service weatherability of polyurethane nanocomposite coatings: Approach, comparison and validation

Author:

Chatterjee Upashana1ORCID,Patra Shantanu2ORCID,Butola Bhupendra S.3,Joshi Mangala3

Affiliation:

1. Department of Textile Engineering, O.U.T.R Bhubneswar India

2. School of Infrastructure, I.I.T Bhubaneswar India

3. Department of Textile and Fibre Engineering, I.I.T Delhi India

Abstract

AbstractThis article addresses the challenge of comparing in‐service weatherability among newly developed coatings. The study aims to compare the durability of three thermoplastic polyurethane‐based coatings specifically formulated for defense inflatables. It introduces a reliability model that incorporates two weathering stresses, namely, ultra‐violet radiation and temperature, to predict the service life of the coatings. A life–stress relationship has been established from the accelerated aging tests, which facilitates the determination of material service life at use level conditions. Notably, the analysis underscores the significant improvement in service lifetime achieved with nanocomposite‐based coatings. The validity of the proposed model is established through comparison with real‐world field test data, emphasizing the effectiveness of the approach in assessing and comparing the performance of the three coated samples. The insights gained from this research will surely contribute to enhancing the durability assessment of coated systems in real‐world conditions for various fields of applications.Highlights Introduces a unique method to compare weatherability of three polyurethane coatings. Reliability model predicts service life under UV and temperature stresses. Life–stress relationship via accelerated aging for accurate service life. Nanocomposite coatings show longer service life than conventional ones. Model validated with field data, confirming practical applicability.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3