Affiliation:
1. Department of Chemical and Biological Engineering The University of Alabama Tuscaloosa Alabama USA
2. Department of Materials Engineering Institute of Mechanical Engineering, University of Tabriz Tabriz Iran
Abstract
AbstractThe genotoxic effect of microwave radiation on humans is one of the leading causes of some diseases like cancer. Despite many reported materials for microwave absorption, there is still a demand for a super‐thin and flexible microwave absorber. In the present work, we synthesized Fe3O4/graphene/polyaniline/nitrile butadiene rubber composites with a thickness of 0.7 mm using a melt mixing method. Then, we comprehensively studied the electromagnetic and microwave absorption properties of the composites from 8 to 12 GHz. The composite with 38 wt% Fe3O4 and 6 wt% graphene exhibited the highest microwave absorption of more than 8 dB in the entire range of 8–12 GHz, with a minimum reflection loss of −14 dB at 10.3 GHz. By increasing the weight content of Fe3O4 and graphene, the imaginary part of dielectric permeability and magnetic permeability initially went up and then declined, resulting in poor impedance matching. Hence, we precisely controlled the weight content of the fillers to reach the highest impedance matching and attenuation constant. Consequently, this work opened up a unique way for developing super‐thin, lightweight, flexible microwave‐absorbing materials.
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献