Prediction of terephthalic acid yield in aqueous hydrolysis of polyethylene terephthalate

Author:

Abedsoltan Hossein1ORCID,Zoghi Zeinab2ORCID,Mohammadi Amir H.3ORCID

Affiliation:

1. Chemical Engineering Department The University of Toledo Toledo Ohio USA

2. Electrical Engineering and Computer Science Department The University of Toledo Toledo Ohio USA

3. Discipline of Chemical Engineering, School of Engineering University of KwaZulu‐Natal, Howard College Campus Durban South Africa

Abstract

AbstractAqueous hydrolysis is used to chemically recycle polyethylene terephthalate (PET) due to production of high‐quality terephthalic acid (TPA), the PET monomer. PET hydrolysis depends on various factors including PET size, catalyst concentration, and reaction temperature. So, modeling PET hydrolysis by considering the effective factors can provide useful information for material researchers to specify how to design and run these reactions. It will save time, energy, and materials by optimizing the hydrolysis conditions. Machine learning algorithms enable to design models to predict the output results. For the first time, 381 experimental data were gathered to model aqueous hydrolysis of PET. Effective factors on PET hydrolysis were connected to the TPA yield. The logistic regression was applied to rank the effective factors. Two algorithms were proposed, artificial neural network multi‐layer perceptron (ANN‐MLP) and adaptive network‐based fuzzy inference system (ANFIS). The dataset was divided into training, validating, and testing sets to train, validate, and test the models, respectively. The models predicted TPA yield sufficiently where the ANFIS model outperformed. R‐squared (R2) and Root Mean Square Error (RMSE) loss functions were employed to measure the efficiency of the models and evaluate their performance.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3