Preparation of superhydrophobic membranes with ultraviolet‐absorbing capacity for oil–water separation by electrospinning

Author:

Wang Xiaohui1ORCID,Li Xinmei1

Affiliation:

1. Modern Industrial College of Intelligent Manufacturing Xinjiang University Urumqi China

Abstract

AbstractTo address the escalating issue of oily wastewater, separation membranes with special wettability on the surface are widely used in oil–water separation. The development of separation membranes with not only stable separation flux but also anti‐fouling properties is an urgent problem. Therefore, polystyrene/polyacrylonitrile‐polyvinylidene fluoride/polydimethylsiloxane‐titanium dioxide nanoparticle (PS/PAN‐PVDF/PDMS@TiO2) composite membranes with superhydrophobicity and lipophilicity were prepared by electrospinning technique. By changing the doping amount of TiO2 nanoparticles, the multilevel rough structure was constructed on the surface, and the transformation of the Ti–O–C chemical bond to the Si–O–Ti chemical bond was realized inside the composite membrane. The results showed that the composite membrane had excellent superhydrophobicity (154.9°) and mechanical properties (tensile strength of 3.54 MPa, elongation of 60.95%). The membrane can absorb ultraviolet light and exhibits enhanced resistance to fouling when exposed to visible‐UV light. Additionally, the composite membrane demonstrates an adsorption capacity of 30–100 g/g for a wide range of oils. In corrosive environments, the composite membrane maintains superhydrophobicity (above 150°) and achieves high oil–water separation efficiency (97%). After 40 cycles, the separation flux of 6000 L.h−1 m−2 can be maintained. Hence, superhydrophobic oleophilic composite membranes with a stable separation flux and resistance to fouling can be employed in the field of oil–water separation.Highlights PS/PAN‐PVDF/PDMS@TiO2 composite membrane with multilevel rough structure. PS/PAN‐PVDF/PDMS@TiO2 composite membrane with excellent UV absorption and self‐cleaning ability. PS/PAN‐PVDF/PDMS@TiO2 composite membrane with stable oil–water separation efficiency in harsh environments.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3