Spatiotemporal variability and underlying large‐scale atmospheric mechanisms causing the change in the Black Sea surface temperature and associated extreme precipitation events in the northeastern of Turkiye

Author:

Baltaci Hakki1ORCID,Turk Mustafa Kemal1

Affiliation:

1. Institute of Earth and Marine Sciences Gebze Technical University Gebze Kocaeli Turkey

Abstract

AbstractSea surface temperature (SST) has an important local and remote influence on global climate through the distribution and transport of heat and moisture. As a result of climate forcing, significant changes occur in the SSTs, which result in many natural disasters such as supercharged storms, higher wind speeds, heavier precipitation and flooding. This study investigates the spatiotemporal changes and underlying atmospheric mechanisms of the Black Sea (BLS) surface temperature. For this purpose, National Oceanicand Atmospheric Administration (NOAA) high‐resolution SST data (0.25°), which were verified with buoy observations, were used for the period 1982–2021. To investigate the circulation impacts, the relationship between North Atlantic Oscillation and East Atlantic/West Russia (EA/WR) phases and SSTs of the western BLS (WBLS) and eastern BLS (EBLS) was analysed. According to the results, SST values increased from 1.64°C (in winter) to 2.52°C (in summer) during the 40‐year period. Significant SST increases are shown in the EBLS during the summer and fall months. Statistically significant negative correlations (p < 0.05) were found between EA/WR and winter (r = −0.57) and summer (r = −0.56) SSTs in the EBLS. During winter, surface high located in the eastern Anatolia causes southerly winds, which blows from the terrestrial areas to the EBLS and result in above‐normal SST values. During summer (under negative EA/WR phases), the Azores high‐pressure centre extends to the Balkan Peninsula and WBLS and as a consequence, a significant amount of moisture associated with high sea surface temperature (>27°C, above‐normal 2.0°C) develops low‐level moisture convergence. Proper synoptic conditions, strong instability conditions between the surface and upper levels, and orographic forcing enable the occurrence of convective cloud cells. The movement of these cells to the northeastern part of Turkiye by strong northwesterly winds causes extreme precipitation and associated flash‐flood events in a limited area where land–sea interaction occurs (i.e., Artvin, Rize and Hopa provinces of Turkiye).

Funder

Gebze Teknik Üniversitesi

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3