Affiliation:
1. Guangdong University of Technology (GDUT) Guangzhou People's Republic of China
Abstract
AbstractThermoplastic polyimides (TPIs) have melt‐processability and adhesive ability, besides the intrinsic advantages of polyimides. To meet the requirements of applications in high‐frequency communication, TPIs with low dielectric constant (Dk)/dielectric loss factor (Df) at high frequency are also desirable. Enhancing the rigidity of polymer chains and simultaneously intermolecular interaction are effective ways to ensure low Dk/Df, which also benefit to heat resistance. However, it is not conducive to thermoplasticity, due to limited movement of polymer chains. To balance the trade‐off between them, we introduce noncoplanar 2,2′‐spirobifluorene groups to modify the rigidity of polymer chains and regulate the twist between electron‐donor moieties (diamine units) and electron‐acceptor moieties (dianhydride units). It leads to rigid polymer chains, which benefits to good heat resistance and dielectric properties. Meanwhile, the resultant irregular chain structure is difficult to crystallize, which results in thermoplasticity.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献