Thermomechanical evaluation of zinc oxide/hydroxyapatite/high‐density polyethylene hybrid composites

Author:

Munir H. M. Babar12ORCID,Yasin Saima1,Iqbal Tanveer3,Qamar Sabih4,Ahmad Aqeel5,Mahmood Hamayoun3,Moniruzzaman Muhammad6

Affiliation:

1. Department of Chemical Engineering University of Engineering and Technology (UET) Main Campus Lahore Pakistan

2. Department of Chemical Engineering Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS) Quetta Pakistan

3. Department of Chemical, Polymer and Composite Materials Engineering University of Engineering and Technology (UET Lahore), New Campus Kala Shah Kaku Pakistan

4. Department of Chemical Engineering Nawaz Sharif University of Engineering and Technology (MNSUET) Multan Pakistan

5. Interdispciplinary Research Center for Refining and Advanced Chemicals King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia

6. Department of Chemical Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar Malaysia

Abstract

AbstractThis study examines the impact of zinc oxide (ZnO) on the spectral, thermal, mechanical, and morphological characteristics of developed composites of high‐density polyethylene (HDPE). Composite samples were fabricated with different compositions of ZnO (0, 5, 10, 15, and 20 wt%) along with a constant quantity of hydroxyapatite (HA, 10 wt%) in pure HDPE. The synthesized hybrid polymer composites were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), universal testing machine (UTM), and field emission scanning electron microscopy (FESEM) methods, allowing for a thorough assessment of their spectral, thermal, mechanical, and morphological properties, repectively. FTIR analysis revealed the presence of HA and ZnO metal vibrations in the hybrid polymer samples. The thermal stability was increased by the incorporation of different amounts of ZnO, and the decomposition temperature was increased from 319.31 to 412°C for 10 wt% of ZnO hybrid composites as compared to pure HDPE. DSC findings indicated that increasing the ZnO contents, prompted the degree of crystallinity to rise to 14.81% as contrasted to neat HDPE. It was observed that yield strength and ultimate tensile strength for the 10 wt% ZnO composite increased up to 51.85% and 31.72%, respectively, compared to pure HDPE. However, at higher loading of ZnO, surface cracks were observed, which is detrimental for composite materials. Hence, the improved attributes indicated that the synthesized ZnO/HA/HDPE polymer composites can be a promising material for biomedical engineering applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3