General approach for atomically dispersed precious metal catalysts toward hydrogen reaction

Author:

Li Ruisong1,Wu Daoxiong1,Rao Peng1,Deng Peilin1,Li Jing1,Luo Junming1,Huang Wei1,Chen Qi1,Kang Zhenye1,Shen Yijun1,Tian Xinlong1ORCID

Affiliation:

1. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology Hainan University Haikou China

Abstract

AbstractAs a carbon‐free energy carrier, hydrogen has become the pivot for future clean energy, while efficient hydrogen production and combustion still require precious metal‐based catalysts. Single‐atom catalysts (SACs) with high atomic utilization open up a desirable perspective for the scale applications of precious metals, but the general and facile preparation of various precious metal‐based SACs remains challenging. Herein, a general movable printing method has been developed to synthesize various precious metal‐based SACs, such as Pd, Pt, Rh, Ir, and Ru, and the features of highly dispersed single atoms with nitrogen coordination have been identified by comprehensive characterizations. More importantly, the synthesized Pt‐ and Ru‐based SACs exhibit much higher activities than their corresponding nanoparticle counterparts for hydrogen oxidation reaction and hydrogen evolution reaction (HER). In addition, the Pd‐based SAC delivers an excellent activity for photocatalytic hydrogen evolution. Especially for the superior mass activity of Ru‐based SACs toward HER, density functional theory calculations confirmed that the adsorption of the hydrogen atom has a significant effect on the spin state and electronic structure of the catalysts.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3