Dimensional effect of graphene nanostructures on cytoskeleton‐coupled anti‐tumor metastasis

Author:

Du Qiqige1ORCID,Li Na2,Lian Jiaqi2,Guo Jun1,Zhang Yi3,Zhang Feng12

Affiliation:

1. Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China

2. Key Laboratory of Optical Technology and Instrument for Medicine Ministry of Education University of Shanghai for Science and Technology Shanghai China

3. Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai China

Abstract

AbstractInteractions between inorganic materials and living systems can be strongly influenced by the dimensional property of the materials, which can in turn impact biological activities. Although the role of biomaterials at the molecular and cellular scales has been studied, research investigating the effects of biomaterials across multiple dimensional scales is relatively scarce. Herein, comparing the effectiveness of two‐dimensional graphene oxide nanosheets (GOs) and three‐dimensional graphene oxide quantum dots (GOQDs) (though not zero‐dimensional because of their significant surface area) in cancer therapies, we have discovered that GOs, with the same mass concentration, exhibit stronger anti‐cancer and anti‐tumor metastasis properties than GOQDs. Our research, which employed liquid‐phase atomic force microscopy, revealed that lower‐dimensional GOs create a more extensive nano‐bio interface that impedes actin protein polymerization into the cytoskeleton, leading to the prevention of tumor metastasis. These results help to better understand the underlying mechanisms and offer a dimensional perspective on the potential of optimizing the properties of graphene‐based materials for clinical applications, e.g., cancer therapy.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3