Roles of Akirin1 in early prediction and treatment of graft kidney ischemia‒reperfusion injury

Author:

Li Xinyuan123ORCID,Chen Guo13,Zhou Xiang13,Peng Xiang13,Li Mao1,Chen Daihui1,Yu Haitao13,Shi Wei13,Zhang Chunlin13,Li Yang13,Feng Zhenwei13,Mei Yuhua13,Li Li13,Liang Simin1,He Weiyang1,Gou Xin1,Li Jie1

Affiliation:

1. Department of Urology The First Affiliated Hospital of Chongqing Medical University Chongqing China

2. CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences Shanghai China

3. Chongqing Key Laboratory of Molecular Oncology and Epigenetics Chongqing China

Abstract

AbstractFerroptosis is a predominant contributor to graft kidney ischemia‒reperfusion injury (IRI), resulting in delayed graft function (DGF). However, much less is known about the early predicting biomarkers and therapeutic targets of DGF, especially aiming at ferroptosis. Here, we propose a precise predicting model for DGF, relying on the Akirin1 level in extracellular vesicles (EVs) derived from recipient urine 48 h after kidney transplant. In addition, we decipher a new molecular mechanism whereby Akirin1 induces ferroptosis by strengthening TP53‐mediated suppression of SLC7A11 during the graft kidney IRI process, that is, Akirin1 activates the EGR1/TP53 axis and inhibits MDM2‐mediated TP53 ubiquitination, accordingly upregulating TP53 in two ways. Meanwhile, we present the first evidence that miR‐136‐5p enriched in EVs secreted by human umbilical cord mesenchymal stem cells (UM‐EVs) confers robust protection against ferroptosis and graft kidney IRI by targeted inhibition of Akirin1 but knockout of miR‐136‐5p in UM sharply mitigates the protection of UM‐EVs. The functional and mechanistic regulation of Akirin1 is further corroborated in an allograft kidney transplant model in wild‐type and Akirin1‐knockout mice. In summary, these findings suggest that Akirin1, which prominently induces ferroptosis, is a pivotal biomarker and target for early diagnosis and treatment of graft kidney IRI and DGF after kidney transplant.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ProPept-MT: A Multi-Task Learning Model for Peptide Feature Prediction;International Journal of Molecular Sciences;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3