Soil organic carbon and nitrogen in a carboniferous spoil heap as a function of vegetation type and reclamation treatment

Author:

Misebo Amisalu Milkias12,Woś Bartłomiej1,Sierka Edyta3,Pietrzykowski Marcin1

Affiliation:

1. Department of Ecological Engineering and Forest Hydrology, Faculty of Forestry University of Agriculture in Krakow Krakow Poland

2. Department of Environmental Science Wolaita Sodo University Wolaita Sodo Ethiopia

3. Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences University of Silesia in Katowice Katowice Poland

Abstract

AbstractEvaluating the impact of vegetation types and reclamation methods on soil organic carbon and nitrogen in carboniferous spoil heaps is critical for selecting the best vegetation type and reclamation method to improve ecosystem services in a changing climate. This paper presents the relationship between vegetation types (woodland, forbland, and grassland) and reclamation techniques (barren rock, topsoil application, succession, and cultivation) on soil organic carbon (SOC) and total nitrogen (TN) in developing soils on carboniferous rocks in coal mine heaps. Soil samples were collected from the litter layer (Oi + Oe) and the A horizons (0–10 cm). The results revealed that vegetation types and reclamation methods significantly affected SOC and TN stocks. Woodland exhibited higher SOC and TN in the Oi + Oe horizons than other vegetation types. Topsoil application and cultivation resulted in the highest SOC and TN stocks in the A horizons (0–10 cm) under woodland and forbland compared to succession on bare carboniferous rock. In grassland, there was no significant difference in SOC stock under topsoil application and cultivation; however, significantly higher TN stock was observed in the 0–10 cm areas with topsoil application compared to succession on bare carboniferous rock. Based on the results, topsoil application is recommended to improve SOC if the mining site is restored using woodland. Conversely, grassland exhibits a similar amount of SOC stock with or without topsoil application. Considering the difficulty of obtaining topsoil, we suggest that grasses are optimal for SOC stock in the studied mining sites, followed by forbs.

Funder

Narodowe Centrum Nauki

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3