Production of CRISPR‐Cas9 Transgenic Cell Lines for Knocksideways Studies

Author:

Wagenbach Michael1,Vicente Juan Jesus1,Wagenbach Wren2,Wordeman Linda1ORCID

Affiliation:

1. Department of Physiology & Biophysics University of Washington School of Medicine Seattle Washington

2. Bieler School of Environment McGill University Montreal Quebec Canada

Abstract

AbstractProtein activity is generally functionally integrated and spatially restricted to key locations within the cell. Knocksideways experiments allow researchers to rapidly move proteins to alternate or ectopic regions of the cell and assess the resultant cellular response. Briefly, individual proteins to be tested using this approach must be modified with moieties that dimerize under treatment with rapamycin to promote the experimental spatial relocalizations. CRISPR technology enables researchers to engineer modified protein directly in cells while preserving proper protein levels because the engineered protein will be expressed from endogenous promoters. Here we provide straightforward instructions to engineer tagged, rapamycin‐relocalizable proteins in cells. The protocol is described in the context of our work with the microtubule depolymerizer MCAK/Kif2C, but it is easily adaptable to other genes and alternate tags such as degrons, optogenetic constructs, and other experimentally useful modifications. Off‐target effects are minimized by testing for the most efficient target site using a split‐GFP construct. This protocol involves no proprietary kits, only plasmids available from repositories (such as addgene.org). Validation, relocalization, and some example novel discoveries obtained working with endogenous protein levels are described. A graduate student with access to a fluorescence microscope should be able to prepare engineered cells with spatially controllable endogenous protein using this protocol. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.Basic Protocol 1: Choosing a target site for gene modificationBasic Protocol 2: Design of gRNA(s) for targeted gene modificationBasic Protocol 3: Split‐GFP test for target efficiencyBasic Protocol 4: Design of the recombination template and analytical primersSupport Protocol 1: Design of primers for analytical PCRBasic Protocol 5: Transfection, isolation, and validation of engineered cellsSupport Protocol 2: Stable transfection of engineered cells with binding partners

Funder

National Institutes of Health

National Science Foundation

Publisher

Wiley

Subject

Medical Laboratory Technology,Health Informatics,General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3