Hydrogen storage mechanism of metal–organic framework materials based on metal centers and organic ligands

Author:

Zhang Bo1,Sun Yanli2,Xu Hong1,He Xiangming1ORCID

Affiliation:

1. Institute of Nuclear and New Energy Technology Tsinghua University Beijing China

2. Systems Engineering Institute Academy of Military Sciences Beijing China

Abstract

AbstractThe effective storage and utilization of hydrogen energy is expected to solve the problems of energy shortage and environmental pollution currently faced by human society. Metal–organic framework materials (MOFs) have been shown by scientists to be very potential hydrogen storage materials. However, the current design methods and strategies for MOFs are still generally in the trial‐and‐error stage, and the research works are at the overall level. To solve the problems of directional design and rational construction of new MOFs, this work uses the principles and methods of coordination chemistry and crystal engineering to carry out the theoretical design and mechanism research of new MOFs for high‐efficiency hydrogen storage application scenarios. In this study, the structures selected for theoretical calculation were divided into two types: different ligands for the same metal (IRMOFs, MOF‐205, and DUT‐23‐Zn) and different metals for the same ligand (DUT‐23‐M [(M = Co, Ni, Cu, and Zn]). The model construction process, hydrogen loading with temperature, specific surface area, hydrogen adsorption energy, charge density and hydrogen storage mechanism of the above structures were analyzed, and the key indicators that may affect the hydrogen storage performance of MOFs were summarized: type and quantity of coordination metals, temperature, pressure, adsorption site and specific surface area.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3