Using carboxyl groups to improve the compatibility of XNBR/lignin composites

Author:

Campos Gustavo Ninho1ORCID,da Rocha Elisson Brum Dutra1ORCID,Furtado Cristina Russi Guimarães1ORCID,de Figueiredo Marco Antonio Gaya1ORCID,de Sousa Ana Maria Furtado1ORCID

Affiliation:

1. Chemistry Institute Rio de Janeiro State University Rio de Janeiro RJ Brazil

Abstract

AbstractThe paper and pulp industry produces lignin as a byproduct, which could be a bio‐based reinforcing filler for rubber. Carboxylated nitrile rubber (XNBR) contains carboxyl groups that form ionic bonds with zinc oxide, potentially increasing compatibility with lignin, compared to usual nonpolar rubbers. This study employed the traditional mixing method, two‐roll mill, to incorporate hardwood Kraft lignin without chemical or physical modification as a reinforcing filler in commercial XNBR. A mixture design of experiments was used to explore the effect on rubber/lignin interaction of the carboxyl group content (from 1% to 7% in blends of XNBR) and the amount of lignin (from 0 to 40 phr). Adding 40 phr of lignin increased stress at 100% in XNBR 7% from 1.7 to 6.3 MPa. In XNBR 1%, the increase was from 1.2 to 1.9 MPa. Lignin showed better interaction and dispersion with XNBR 7%, determined from response surface of G′ at high deformations and SEM, respectively. Loss of thermal transition in DMA indicates interaction through ionic groups. These results show that the presence of carboxyl groups enhances the rubber/lignin interaction. This research open possibilities of compatibilization of lignin, offering guidance for future studies and technologies involving lignin in technical applications.Highlights Lignin dispersion increased as the carboxyl group content increased to 7% (w/w). Stress at 100% elongation increased 370% with 40 phr of lignin and 7% carboxyl. Rubber/lignin interaction as per G′ increased with carboxyl groups. Loss of thermal transition suggests lignin/carboxy/zinc oxide interaction. Lignin can be used as a reinforcing filler in nitrile carboxylated rubber.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3