Amplifying T cell‐mediated antitumor immune responses in nonsmall cell lung cancer through photodynamic therapy and anti‐PD1

Author:

Gong Beilei123,Wang Liping2,Zhang Han2,Wang Qingkai2,Li Wei1234ORCID

Affiliation:

1. Anhui Medical University Hefei China

2. Department of Pulmonary and Critical Care Medicine The First Affiliated Hospital of Bengbu Medical College Bengbu China

3. Clinical and Preclinical Key Laboratory of Respiratory Disease in Anhui Province Bengbu China

4. Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province Bengbu China

Abstract

AbstractPhotodynamic therapy (PDT) is nowadays widely employed in cancer treatment. We sought to assess the efficacy of combining PDT with anti‐programmed cell death protein 1 (PD1) and to investigate the associated mechanisms in nonsmall cell lung cancer (NSCLC). We established a xenograft tumor model in C57BL/6J mice using Lewis lung carcinoma (LLC) cells, recorded tumor growth, and quantified reactive oxygen species (ROS) levels using a ROS detection kit. Pathological changes were assessed through H&E staining, while immunofluorescence (IF) was used to determine the expression of CD8 and Foxp3. Transcriptomic analysis was conducted, analyzing differential expressed genes (DEGs) among control, PDT, and PDT combined with anti‐PD1 (PDT+anti‐PD1) groups. Functional enrichment analysis via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed. The Cancer Genome Atlas (TCGA) database was utilized to analyze the expression of aminolevulinate synthase gene (ALAS2), integrin alpha10 (ITGA10), ATP1A2, a disintegrin and metalloprotease 12 (ADAM12), and Lox1 in lung adenocarcinoma and adjacent tissues, with concurrent immune infiltration analysis. Quantitative real‐time polymerase chain reaction and western blot were employed to measure mRNA and protein expression levels. Treatment with PDT combined with anti‐PD1 significantly inhibited tumor growth and increased the number of CD8+ cells while decreasing Foxp3+ cells. Immune infiltration results presented ALAS2, ADAM12, and ITGA10 were associated with various types of T cells or macrophages. Additionally, the expression levels of EGFR, ERK, and PI3K/Akt were suppressed after PDT with anti‐PD1 treatment. Our findings collectively suggest that PDT combined with anti‐PD1 treatment could enhance the infiltration of CD8+ T cells, suppressing tumor growth, and this effect was associated with ALAS2, ITGA10, and ADAM12. The underlying mechanism might be linked to EGFR, ERK, and PI3K/Akt signaling. Overall, this study provides valuable insights into the application of PDT combined with anti‐PD1 treatment in NSCLC.

Publisher

Wiley

Subject

Cell Biology,Clinical Biochemistry,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3