Similarity‐based clustering for patterns of extreme values

Author:

de Carvalho Miguel1,Huser Raphael2ORCID,Rubio Rodrigo3

Affiliation:

1. School of Mathematics University of Edinburgh Edinburgh EH9 3FD UK

2. CEMSE Division King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia

3. Data Analytics Section BCI Bank Santiago 8320000 Chile

Abstract

Statistical modelling of the magnitude and the frequency of extreme observations is fundamental for a variety of sciences. In this paper, we develop statistical methods of similarity‐based clustering for heteroscedastic extremes, which allow us to group time series of independent observations according to their extreme‐value index and scedasis function (i.e., the magnitude and frequency of extreme values, respectively). Clustering scedasis functions and extreme‐value indices involves the challenge of grouping objects composed of both a function (scedasis) and a scalar (extreme‐value index), and thus the need to partition a product‐space. Our analysis reveals an interesting mismatch between the magnitude and frequency of extreme losses on the London Stock Exchange and the corresponding economic sectors of the affected stocks. The analysis further suggests that the dynamics governing the comovement of extreme losses in the exchange contains information on the business cycle.

Funder

Fundação para a Ciência e a Tecnologia

King Abdullah University of Science and Technology

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference45 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3