Impact of high‐permeability preferential flow zones on pumping‐induced airflow in unconfined aquifer

Author:

Shan Jipeng1ORCID,Yang Zhenlei2ORCID,Kuang Xingxing1,Jiao Jiu Jimmy3

Affiliation:

1. State Environmental Protection Key Laboratory of Integrated Surface Water‐Groundwater Pollution Control, School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen China

2. Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering Westlake University Hangzhou China

3. Department of Earth Sciences The University of Hong Kong Hong Kong China

Abstract

AbstractWhen the unsaturated zone of the unconfined aquifer is covered by a low‐permeability upper layer, significant airflow will be generated in the unsaturated zone during water pumping. However, high permeability preferential flow zones (PFZs) such as fractures and macropores are frequently present in the unsaturated zone, forming the preferential fluid flow paths, which may change the original airflow pattern in the unsaturated zone during the pumping test and consequently affect the precision of obtained aquifer hydraulic parameters. The main objective of this paper is to investigate the effect of PFZs in low‐permeability upper layer on pumping‐induced airflow in the unsaturated zone by numerical simulations of transient three‐dimensional air‐water two‐phase flow and to quantify errors in the aquifer hydraulic parameters obtained during pumping test. The results demonstrate that a large amount of air flows quickly from the atmosphere into the unsaturated zone through the PFZs, and that the PFZs can draw some air from the nearby low‐permeability soils as well. The significant influx of air through PFZs also reduces the negative air pressure in the unsaturated zone and decreases the drawdown in the saturated zone at intermediate times, which are nevertheless still greater than the results obtained in the homogeneous aquifer. Estimations of the aquifer hydraulic parameters reveal that errors of these parameters obtained are smaller when the PFZs with favourable combinations of permeability, width and quantities facilitate more air to flow into the unsaturated zone.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3