Increasing fire frequency may trigger eco‐hydrologic divergence

Author:

Lakmali Shyanika1ORCID,Benyon Richard G.1,Sheridan Gary J.1,Lane Patrick N. J.1

Affiliation:

1. School of Ecosystem and Forest Sciences, Faculty of Science, Biosciences 1 The University of Melbourne Parkville Victoria 3010 Australia

Abstract

AbstractClimate‐induced fire regimes may change species abundance and species composition in affected forest types, potentially altering pyro‐eco‐hydrologic feedbacks. In some fire‐prone forests across the globe, eco‐hydrologic thresholds (changing points, or tipping points, in ecohydrology when vegetation shifts from one steady vegetation to another) are being exceeded due to changes in relationships between climate, fire and vegetation. Following compound disturbances, forests may fail to maintain ecological resilience. Under multiple burn conditions, Eucalyptus regnans F. Muell. forests in south east Australia are highly vulnerable to ecological tipping points. In Victoria, over 189 000 ha of obligate seeder forests have been burned two or more times within 18 years. These short return‐interval fires allow Acacia dealbata to become the dominant overstorey species. Such a dramatic species replacement may result in a new evapotranspiration (ET) regime, leading to a new hydrologic state. Stand scale dynamic models were combined with field estimated ET in E. regnans and A. dealbata forests aged 10, 35 and 75/80 years. We found that long‐term forest structure, ET and water yield significantly diverge between E. regnans and A. dealbata forests with increasing age. These divergences imply a non‐equilibrium state after A. dealbata replaces E. regnans under high‐frequency fire conditions. In senescing A. dealbata, understorey transpiration contribution of 29.8% to system ET was similar to that of overstorey transpiration (31.2%), indicating the understorey and overstorey contribute equally to total ET at the final stage of Acacia forests. In contrast, in 75‐year‐old E. regnans forests, understorey contribution to the total system evapotranspiration is about 16%. This suggests that, after the Acacia life cycle finishes, the ET regime will transit into a new state that will be dominated by shrubby understorey species. Our findings suggest that this climate‐induced species replacement would decrease long‐term ET, inferring an increase in streamflow.

Funder

Melbourne Water

Publisher

Wiley

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3