Fast interfacial electrocatalytic desolvation enabling low‐temperature and long‐cycle‐life aqueous Zn batteries

Author:

Wang Jian123ORCID,Hu Hongfei1,Jia Lujie1,Zhang Jing1,Zhuang Quan4,Li Linge1,Zhang Yongzheng5,Wang Dong6,Guan Qinghua1,Hu Huimin1,Liu Meinan1,Zhan Liang5,Adenusi Henry789,Passerini Stefano2310ORCID,Lin Hongzhen1

Affiliation:

1. i‐Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano‐Tech and Nano‐Bionics Chinese Academy of Sciences Suzhou the People’s Republic of China

2. Helmholtz Institute Ulm (HIU) Ulm Germany

3. Karlsruhe Institute of Technology (KIT) Karlsruhe Germany

4. Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII) Inner Mongolia Minzu University Tongliao the People’s Republic of China

5. State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai the People’s Republic of China

6. School of Materials Science & Engineering and International Center of Future Science Jilin University Changchun Jilin the People’s Republic of China

7. Department of Science and Engineering of Matter, Environment and Urban Planning Marche Polytechnic University Ancona Italy

8. Department of Chemistry The University of Hong Kong Hong Kong the People’s Republic of China

9. Hong Kong Quantum AI Lab Hong Kong the People’s Republic of China

10. Chemistry Department Sapienza University of Rome Rome Italy

Abstract

AbstractLow‐temperature zinc batteries (LT‐ZIBs) based on aqueous electrolytes show great promise for practical applications owing to their natural resource abundance and low cost. However, they suffer from sluggish kinetics with elevated energy barriers due to the dissociation of bulky Zn(H2O)62+ solvation structure and free Zn2+ diffusion, resulting in unsatisfactory lifespan and performance. Herein, dissimilar to solvation shell tuning or layer spacing enlargement engineering, delocalized electrons in cathode through constructing intrinsic defect engineering is proposed to achieve a rapid electrocatalytic desolvation to obtain free Zn2+ for insertion/extraction. As revealed by density functional theory calculations and interfacial spectroscopic characterizations, the intrinsic delocalized electron distribution propels the Zn(H2O)62+ dissociation, forming a reversible interphase and facilitating Zn2+ diffusion across the electrolyte/cathode interface. The as‐fabricated oxygen defect‐rich V2O5 on hierarchical porous carbon (ODVO@HPC) electrode exhibits high capacity robustness from 25 to −20°C. Operating at −20°C, the ODVO@HPC delivers 191 mAh g−1 at 50 A g−1 and lasts for 50 000 cycles at 10 A g−1, significantly enhancing the power density and lifespan under low‐temperature environments in comparison to previous reports. Even with areal mass loading of ~13 mg cm−2, both coin cells and pouch batteries maintain excellent stability and areal capacities, realizing practical high‐performance LT‐ZIBs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Alexander von Humboldt-Stiftung

Helmholtz Association

University of Hong Kong

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3