Enhanced charge transport in 2D inorganic molecular crystals constructed with charge‐delocalized molecules

Author:

Wu Jie12,Zeng Yan3,Feng Xin1,Ma Yiran1,Li Pengyu1,Li Chunlei3,Liu Teng1,Liu Shenghong1,Zhao Yinghe1,Li Huiqiao1ORCID,Jiang Lang3,Yi Yuanping3,Zhai Tianyou1ORCID

Affiliation:

1. State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan the People's Republic of China

2. Hubei Yangtze Memory Laboratories Wuhan the People's Republic of China

3. Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing the People's Republic of China

Abstract

AbstractOutstanding charge transport in molecular crystals is of great importance in modern electronics and optoelectronics. The widely adopted strategies to enhance charge transport, such as restraining intermolecular vibration, are mostly limited to organic molecules, which are nearly inoperative in 2D inorganic molecular crystals currently. In this contribution, charge transport in 2D inorganic molecular crystals is improved by integrating charge‐delocalized Se8 rings as building blocks, where the delocalized electrons on Se8 rings lift the intermolecular orbitals overlap, offering efficient charge transfer channels. Besides, α‐Se flakes composed of charge‐delocalized Se8 rings possess small exciton binding energy. Benefitting from these, α‐Se flake exhibits excellent photodetection performance with an ultrafast response rate (~5 μs) and a high detectivity of 1.08 × 1011 Jones. These findings contribute to a deeper understanding of the charge transport of 2D inorganic molecular crystals composed of electron‐delocalized inorganic molecules and pave the way for their potential application in optoelectronics.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3