Revealing processing stability landscape of organic solar cells with automated research platforms and machine learning

Author:

Du Xiaoyan123ORCID,Lüer Larry12,Heumueller Thomas12,Classen Andrej12,Liu Chao12,Berger Christian12,Wagner Jerrit12,Le Corre Vincent M.12,Cao Jiamin4,Xiao Zuo5,Ding Liming5,Forberich Karen12,Li Ning126,Hauch Jens12,Brabec Christoph J.12

Affiliation:

1. Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Erlangen Germany

2. Institute of Materials for Electronics and Energy Technology (i‐MEET) Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany

3. School of Physics, State Key Laboratory of Crystal Materials Shandong University Jinan the People’s Republic of China

4. Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan the People’s Republic of China

5. Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing the People’s Republic of China

6. Institute of Polymer Optoelectronic Materials & Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials & Devices South China University of Technology

Abstract

AbstractWe use an automated research platform combined with machine learning to assess and understand the resilience against air and light during production of organic photovoltaic (OPV) devices from over 40 donor and acceptor combinations. The standardized protocol and high reproducibility of the platform results in a dataset of high variety and veracity to deploy machine learning models to encounter links between stability and chemical, energetic, and morphological structure. We find that the strongest predictor for air/light resilience during production is the effective gap Eg,eff which points to singlet oxygen rather than the superoxide anion being the dominant agent in degradation under processing conditions. A similarly good prediction of air/light resilience can also be achieved by considering only features from chemical structure, that is, information which is available prior to any experimentation.

Funder

Deutsche Forschungsgemeinschaft

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3