NIR regeneration and visible luminescence modification in photochromic glass: A novel encryption and 3D optical storage medium

Author:

Zhao Heping12,Li Yuewei3,Mi Chao3,Zi Yingzhu12,Bai Xue1,Haider Asif Ali1ORCID,Cun Yangke1,Huang Anjun1,Liu Yue1,Qiu Jianbei1,Song Zhiguo1,Liao Jiayan3ORCID,Zhou Ji4,Yang Zhengwen1ORCID

Affiliation:

1. College of Materials Science and Engineering Kunming University of Science and Technology Kunming China

2. Southwest United Graduate School Kunming China

3. Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney Sydney New South Wales Australia

4. State Key Lab of New Ceramics and Fine Processing, Department of Materials Science and Engineering Tsinghua University Beijing People's Republic of China

Abstract

AbstractPhotochromic glass shows great promise for 3D optical information encryption and storage applications. The formation of Ag nanoclusters by light irradiation has been a significant development in the field of photochromic glass research. However, extending this approach to other metal nanoclusters remains a challenge. In this study, we present a pioneering method for crafting photochromic glass with reliably adjustable dual‐mode luminescence in both the NIR and visible spectra. This was achieved by leveraging bimetallic clusters of bismuth, resulting in a distinct and novel photochromic glass. When rare‐earth‐doped, bismuth‐based glass is irradiated with a 473 nm laser, and it undergoes a color transformation from yellow to red, accompanied by visible and broad NIR luminescence. This phenomenon is attributed to the formation of laser‐induced (Bi+, Bi0) nanoclusters. We achieved reversible manipulation of the NIR luminescence of these nanoclusters and visible rare‐earth luminescence by alternating exposure to a 473 nm laser and thermal stimulation. Information patterns can be inscribed and erased on a glass surface or in 3D space, and the readout is enabled by modulating visible and NIR luminescence. This study introduces a pioneering strategy for designing photochromic glasses with extensive NIR luminescence and significant potential for applications in high‐capacity information encryption, optical data storage, optical communication, and NIR imaging. The exploration of bimetallic cluster formation in Bi represents a vital contribution to the advancement of multifunctional glass systems with augmented optical functionalities and versatile applications.image

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3