Recent advances and future perspectives of Ruddlesden–Popper perovskite oxides electrolytes for all‐solid‐state batteries

Author:

Zhou Chongyang1,Guo Weibin1,Fan Jiayao12,Shi Naien13,Zhao Yi1,Yang Xu1,Ding Zhen3,Han Min12,Huang Wei34ORCID

Affiliation:

1. Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE) Fuzhou the People's Republic of China

2. Jiangsu Key Laboratory of New Power Batteries, And Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science Nanjing Normal University Nanjing the People's Republic of China

3. Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications Nanjing the People's Republic of China

4. Frontiers Science for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KloFE) Northwestern Polytechnical University Xi'an the People's Republic of China

Abstract

AbstractAll‐solid‐state batteries equipped with solid‐state electrolytes (SSEs) have gained significant interest due to their enhanced safety, energy density, and longevity in comparison to traditional liquid organic electrolyte‐based batteries. However, many SSEs, such as sulfides and hydrides, are highly sensitive to water, limiting their practical use. As one class of important perovskites, the Ruddlesden–Popper perovskite oxides (RPPOs), show great promise as SSEs due to their exceptional stability, particularly in terms of water resistance. In this review, the crystal structure and synthesis methods of RPPOs SSEs are first introduced in brief. Subsequently, the mechanisms of ion transportation, including oxygen anions and lithium‐ions, and the relevant strategies for enhancing their ionic conductivity are described in detail. Additionally, the progress made in developing flexible RPPOs SSEs, which are critical for flexible and wearable electronic devices, has also been summarized. Furthermore, the key challenges and prospects for exploring and developing RPPOs SSEs in all‐solid‐state batteries are suggested. This review presents in detail the synthesis methods, the ion transportation mechanism, and strategies to enhance the room temperature ionic conductivity of RPPOs SSEs, providing valuable insights on enhancing their ionic conductivity and thus for their practical application in solid‐state batteries.image

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3