High‐throughput combinatorial approach expedites the synthesis of a lead‐free relaxor ferroelectric system

Author:

Zhang Di1ORCID,Harmon Katherine J.2,Zachman Michael J.3,Lu Ping4,Kim Doyun5,Zhang Zhan6,Cucciniello Nicholas1,Markland Reid1,Ssennyimba Ken William1,Zhou Hua6,Cao Yue2,Brahlek Matthew7,Zheng Hao26,Schneider Matthew M.8,Mazza Alessandro R.18ORCID,Hughes Zach1,Somodi Chase1,Freiman Benjamin1,Pooley Sarah1,Kunwar Sundar1ORCID,Roy Pinku1,Tu Qing5,McCabe Rodney J.8,Chen Aiping1

Affiliation:

1. Center for Integrated Nanotechnologies Los Alamos National Laboratory Los Alamos New Mexico USA

2. Materials Science Division Argonne National Laboratory Lemont Illinois USA

3. Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee USA

4. Sandia National Laboratories Albuquerque New Mexico USA

5. Department of Materials Science and Engineering Texas A&M University College Station Texas USA

6. Advanced Photon Source (APS) Argonne National Laboratory Lemont Illinois USA

7. Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge Tennessee USA

8. Materials Science and Technology Division Los Alamos National Laboratory Los Alamos New Mexico USA

Abstract

AbstractDeveloping novel lead‐free ferroelectric materials is crucial for next‐generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time‐consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high‐throughput combinatorial synthesis approach to fabricate lead‐free ferroelectric superlattices and solid solutions of (Ba0.7Ca0.3)TiO3 (BCT) and Ba(Zr0.2Ti0.8)O3 (BZT) phases with continuous variation of composition and layer thickness. High‐resolution x‐ray diffraction (XRD) and analytical scanning transmission electron microscopy (STEM) demonstrate high film quality and well‐controlled compositional gradients. Ferroelectric and dielectric property measurements identify the “optimal property point” achieved at the composition of 48BZT–52BCT. Displacement vector maps reveal that ferroelectric domain sizes are tunable by varying {BCT–BZT}N superlattice geometry. This high‐throughput synthesis approach can be applied to many other material systems to expedite new materials discovery and properties optimization, allowing for the exploration of a large area of phase space within a single growth.image

Funder

Center for Integrated Nanotechnologies

Sandia National Laboratories

U.S. Department of Energy

Argonne National Laboratory

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3