Affiliation:
1. State Key Laboratory of Extreme Photonics and Instrumentation, School of Optical Science and Engineering Zhejiang University Hangzhou Zhejiang China
2. Institute of Microelectronics and Nanoelectronics, College of Information Science and Electronic Engineering Zhejiang University Hangzhou Zhejiang China
3. Department of Electronic and Electrical Engineering University College London London UK
Abstract
AbstractThe rapid development of emerging technologies observed in recent years, such as artificial intelligence, machine learning, mobile internet, big data, cloud computing, and the Internet of Everything, are generating escalating demands for expanding the capacity density, and speed in next‐generation optical communications. This poses a significant challenge to existing communication techniques. Within this context, the integration of near‐infrared broadband, tunable, and high‐gain luminescent materials into silicon optical circuits or fiber architectures to transmit and modulate light shows enormous potential for advancing next‐generation communication techniques. Here, this review provides an overview of the recent breakthroughs in near‐infrared luminescent epitaxial/colloidal quantum dots, and metal‐active‐center‐doped materials for broadband optical amplifiers and tunable lasers. We also expound on efforts to enhance the bandwidth and gain of these materials‐based amplifiers and lasers, exploring the challenges associate with developing ultra‐broadband and high‐speed optical communication systems. Additionally, the potential applications in Fifth Generation Fixed Networks, integration with 5G and 6G wireless networks, compensation for current Si electronic based CMOS for high computing capability, and the prospects of these light sources for next‐generation optoelectronic devices are discussed.image
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Engineering and Physical Sciences Research Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献